BatchRendererGroup (BRG) 不会自动提供任何实例数据。实例数据包括为 游戏对象Unity 场景中的基本对象,可以表示角色、道具、场景、摄像机、航点等。游戏对象的功能由附加到该对象上的组件定义。 更多信息
参见 词汇表 而构建的很多属性,例如变换矩阵、光探针光探针存储了有关光线如何在场景空间中传播的信息。光探针集合将安排在给定空间内,它可以在该空间内改善移动对象和静态 LOD 场景上的照明。 更多信息
参见 词汇表 系数,以及 光照图预先渲染的纹理,其中包含光源对场景中静态对象的影响。光照图叠加在场景几何图形上,以产生照明效果。 更多信息
参见 词汇表 纹理坐标。这意味着如果由您自己提供实例数据,那么环境光照等特性才会起作用。要做到这一点,您需要添加和配置批次。批次是实例的集合,其中每个实例对应于要渲染的单一事物。实例实际代表什么取决于您想要渲染的内容。例如,在道具对象渲染器中,实例可以表示单个道具,而在 地形场景中的景观。地形游戏对象将一个大平面添加到您的场景,您可以使用地形的检查器窗口创建详细的景观。 更多信息
参见 词汇表 渲染器中,实例可以表示单个地形块。
每个批处理都有一组元数据值和一个单个的 GraphicsBuffer,批处理中的每个实例都共享该元数据值。加载实例数据时,通常的过程是使用元数据值从 GraphicsBuffer 中正确的位置加载数据。UNITY_ACCESS_DOTS_INSTANCED_PROP
系列 着色器在 GPU 上运行的程序。 更多信息
参见 词汇表 宏与该方案配合使用(请参阅 访问 DOTS 实例属性)。但是,您不必使用这种按实例加载数据的方案,并且如果需要,您可以自由地实施自己的方案。
若要创建批处理,请使用 BatchRendererGroup.AddBatch。该方法接收元数据值数组以及对 GraphicsBuffer 的句柄。当 Unity 渲染批处理中的实例时,Unity 会将元数据值传递给着色器,并将 GraphicsBuffer 绑定为 unity_DOTSInstanceData
。对于着色器使用但您在创建批处理时未传入的元数据值,Unity 会将它们设置为零。
创建批处理元数据值后,您无法修改它们,因此您传递给批处理的任何元数据值都是最终值。如果您需要更改任何元数据值,请创建一个新批处理并删除旧批处理。您可以随时修改批处理的 GraphicsBuffer。为此,请使用 SetBatchBuffer。如果现有的缓冲区用尽,这可能有助于调整缓冲区大小并分配更大的缓冲区。
注意:创建批处理时不必指定其大小。相反,您必须确保着色器能够正确处理您传递给它的实例索引。这意味着什么取决于着色器。对于 Unity 提供的 SRP 着色器,这意味着在您传递的索引处缓冲区中必须包含有效的实例数据。
请参阅下面的代码示例,了解如何使用元数据值和实例数据的 GraphicsBuffer 创建批处理。此代码示例基于 注册网格和材质 中的示例。
using System;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;
using Unity.Jobs;
using UnityEngine;
using UnityEngine.Rendering;
public class SimpleBRGExample : MonoBehaviour
{
public Mesh mesh;
public Material material;
private BatchRendererGroup m_BRG;
private GraphicsBuffer m_InstanceData;
private BatchID m_BatchID;
private BatchMeshID m_MeshID;
private BatchMaterialID m_MaterialID;
// Some helper constants to make calculations more convenient.
private const int kSizeOfMatrix = sizeof(float) * 4 * 4;
private const int kSizeOfPackedMatrix = sizeof(float) * 4 * 3;
private const int kSizeOfFloat4 = sizeof(float) * 4;
private const int kBytesPerInstance = (kSizeOfPackedMatrix * 2) + kSizeOfFloat4;
private const int kExtraBytes = kSizeOfMatrix * 2;
private const int kNumInstances = 3;
// The PackedMatrix is a convenience type that converts matrices into
// the format that Unity-provided SRP shaders expect.
struct PackedMatrix
{
public float c0x;
public float c0y;
public float c0z;
public float c1x;
public float c1y;
public float c1z;
public float c2x;
public float c2y;
public float c2z;
public float c3x;
public float c3y;
public float c3z;
public PackedMatrix(Matrix4x4 m)
{
c0x = m.m00;
c0y = m.m10;
c0z = m.m20;
c1x = m.m01;
c1y = m.m11;
c1z = m.m21;
c2x = m.m02;
c2y = m.m12;
c2z = m.m22;
c3x = m.m03;
c3y = m.m13;
c3z = m.m23;
}
}
private void Start()
{
m_BRG = new BatchRendererGroup(this.OnPerformCulling, IntPtr.Zero);
m_MeshID = m_BRG.RegisterMesh(mesh);
m_MaterialID = m_BRG.RegisterMaterial(material);
AllocateInstanceDataBuffer();
PopulateInstanceDataBuffer();
}
private void AllocateInstanceDataBuffer()
{
m_InstanceData = new GraphicsBuffer(GraphicsBuffer.Target.Raw,
BufferCountForInstances(kBytesPerInstance, kNumInstances, kExtraBytes),
sizeof(int));
}
private void PopulateInstanceDataBuffer()
{
// Place a zero matrix at the start of the instance data buffer, so loads from address 0 return zero.
var zero = new Matrix4x4[1] { Matrix4x4.zero };
// Create transform matrices for three example instances.
var matrices = new Matrix4x4[kNumInstances]
{
Matrix4x4.Translate(new Vector3(-2, 0, 0)),
Matrix4x4.Translate(new Vector3(0, 0, 0)),
Matrix4x4.Translate(new Vector3(2, 0, 0)),
};
// Convert the transform matrices into the packed format that the shader expects.
var objectToWorld = new PackedMatrix[kNumInstances]
{
new PackedMatrix(matrices[0]),
new PackedMatrix(matrices[1]),
new PackedMatrix(matrices[2]),
};
// Also create packed inverse matrices.
var worldToObject = new PackedMatrix[kNumInstances]
{
new PackedMatrix(matrices[0].inverse),
new PackedMatrix(matrices[1].inverse),
new PackedMatrix(matrices[2].inverse),
};
// Make all instances have unique colors.
var colors = new Vector4[kNumInstances]
{
new Vector4(1, 0, 0, 1),
new Vector4(0, 1, 0, 1),
new Vector4(0, 0, 1, 1),
};
// In this simple example, the instance data is placed into the buffer like this:
// Offset | Description
// 0 | 64 bytes of zeroes, so loads from address 0 return zeroes
// 64 | 32 uninitialized bytes to make working with SetData easier, otherwise unnecessary
// 96 | unity_ObjectToWorld, three packed float3x4 matrices
// 240 | unity_WorldToObject, three packed float3x4 matrices
// 384 | _BaseColor, three float4s
// Calculates start addresses for the different instanced properties. unity_ObjectToWorld starts
// at address 96 instead of 64, because the computeBufferStartIndex parameter of SetData
// is expressed as source array elements, so it is easier to work in multiples of sizeof(PackedMatrix).
uint byteAddressObjectToWorld = kSizeOfPackedMatrix * 2;
uint byteAddressWorldToObject = byteAddressObjectToWorld + kSizeOfPackedMatrix * kNumInstances;
uint byteAddressColor = byteAddressWorldToObject + kSizeOfPackedMatrix * kNumInstances;
// Upload the instance data to the GraphicsBuffer so the shader can load them.
m_InstanceData.SetData(zero, 0, 0, 1);
m_InstanceData.SetData(objectToWorld, 0, (int)(byteAddressObjectToWorld / kSizeOfPackedMatrix), objectToWorld.Length);
m_InstanceData.SetData(worldToObject, 0, (int)(byteAddressWorldToObject / kSizeOfPackedMatrix), worldToObject.Length);
m_InstanceData.SetData(colors, 0, (int)(byteAddressColor / kSizeOfFloat4), colors.Length);
// Set up metadata values to point to the instance data. Set the most significant bit 0x80000000 in each
// which instructs the shader that the data is an array with one value per instance, indexed by the instance index.
// Any metadata values that the shader uses that are not set here will be 0. When a value of 0 is used with
// UNITY_ACCESS_DOTS_INSTANCED_PROP (i.e. without a default), the shader interprets the
// 0x00000000 metadata value and loads from the start of the buffer. The start of the buffer is
// a zero matrix so this sort of load is guaranteed to return zero, which is a reasonable default value.
var metadata = new NativeArray<MetadataValue>(3, Allocator.Temp);
metadata[0] = new MetadataValue { NameID = Shader.PropertyToID("unity_ObjectToWorld"), Value = 0x80000000 | byteAddressObjectToWorld, };
metadata[1] = new MetadataValue { NameID = Shader.PropertyToID("unity_WorldToObject"), Value = 0x80000000 | byteAddressWorldToObject, };
metadata[2] = new MetadataValue { NameID = Shader.PropertyToID("_BaseColor"), Value = 0x80000000 | byteAddressColor, };
// Finally, create a batch for the instances and make the batch use the GraphicsBuffer with the
// instance data as well as the metadata values that specify where the properties are.
m_BatchID = m_BRG.AddBatch(metadata, m_InstanceData.bufferHandle);
}
// Raw buffers are allocated in ints. This is a utility method that calculates
// the required number of ints for the data.
int BufferCountForInstances(int bytesPerInstance, int numInstances, int extraBytes = 0)
{
// Round byte counts to int multiples
bytesPerInstance = (bytesPerInstance + sizeof(int) - 1) / sizeof(int) * sizeof(int);
extraBytes = (extraBytes + sizeof(int) - 1) / sizeof(int) * sizeof(int);
int totalBytes = bytesPerInstance * numInstances + extraBytes;
return totalBytes / sizeof(int);
}
private void OnDisable()
{
m_BRG.Dispose();
}
public unsafe JobHandle OnPerformCulling(
BatchRendererGroup rendererGroup,
BatchCullingContext cullingContext,
BatchCullingOutput cullingOutput,
IntPtr userContext)
{
// This simple example doesn't use jobs, so it can just return an empty JobHandle.
// Performance-sensitive applications should use Burst jobs to implement
// culling and draw command output. In this case, this function would return a
// handle here that completes when the Burst jobs finish.
return new JobHandle();
}
}
在 BatchRendererGroup 对象中注册所有必需的资源后,您可以创建绘制命令。有关更多信息,请参阅下一个主题 创建绘制命令。
Did you find this page useful? Please give it a rating:
Thanks for rating this page!
What kind of problem would you like to report?
Thanks for letting us know! This page has been marked for review based on your feedback.
If you have time, you can provide more information to help us fix the problem faster.
Provide more information
You've told us this page needs code samples. If you'd like to help us further, you could provide a code sample, or tell us about what kind of code sample you'd like to see:
You've told us there are code samples on this page which don't work. If you know how to fix it, or have something better we could use instead, please let us know:
You've told us there is information missing from this page. Please tell us more about what's missing:
You've told us there is incorrect information on this page. If you know what we should change to make it correct, please tell us:
You've told us this page has unclear or confusing information. Please tell us more about what you found unclear or confusing, or let us know how we could make it clearer:
You've told us there is a spelling or grammar error on this page. Please tell us what's wrong:
You've told us this page has a problem. Please tell us more about what's wrong:
Thank you for helping to make the Unity documentation better!
Your feedback has been submitted as a ticket for our documentation team to review.
We are not able to reply to every ticket submitted.